Prázdny
0,00 €
 
Python for Data Analysis 3e: Data Wrangling with pandas, NumPy, and Jupyter

Python for Data Analysis 3e: Data Wrangling with pandas, NumPy, and Jupyter

Autor:
|
Vydavateľstvo:
Dátum vydania: 26.08.2022
Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter ...
Naša cena knihy: 137,44 €
Zasielame: Vypredané
Detaily o knihe
Počet strán: 561
Rozmer: 179x234x40 mm
Hmotnosť: 1028 g
Jazyk: Anglicky
EAN: 9781098104030
Rok vydania: 2022
Žáner: Literatúra faktu
Typ: Paperback
Zákazníci, ktorí si kúpili túto knihu, si kúpili aj...
Rome - You are Here - mapa 2016
autor neuvedený
11,23 €
Poznáváme zvířátka
autor neuvedený
0,00 €
Sprachrätsel Deutsch - Landeskunde
kolektiv autorů
12,69 €
21 spôsobov adorácie
Vinny Flynn
7,90 €
Dějiny Střední Asie
Jean Paul Roux
12,75 €
Ocean Child: Songs of Yoko Ono
Yoko Ono Tribute
18,09 €
O knihe
Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the Jupyter notebook and IPython shell for exploratory computing Learn basic and advanced features in NumPy Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples